nynw.net
当前位置:首页 >> sin4次方的不定积分怎么求 >>

sin4次方的不定积分怎么求

sinx的四次方的积分需借助降幂公式求解。 具体解答过程: =∫(sinx)^4dx =∫(1-cos²x)²dx 【利用公式cos²x+sin²x=1】 =∫(1 - cos2x)/2)^2dx 【利用公式cos²x=(cos2x+1)/2】=∫(1 - 2cos2x + (cos2x)^2)/4 dx =∫[1/4- 1/2c...

降幂 cos2x=1-2(sinx)^2 四次方: 四次方就是四个所指的数相乘,例图则是十的四次方,就是四个十相乘。得10×10×10×10=10 000 *注:四次方的“四”要比数字小一点点。

∫(sinx)^4dx =∫[(1/2)(1-cos2x]^2dx =(1/4)∫[1-2cos2x+(cos2x)^2]dx =(1/4)∫[1-2cos2x+(1/2)(1+cos4x)]dx =(3/8)∫dx-(1/2)∫cos2xdx+(1/8)∫cos4xdx =(3/8)∫dx-(1/4)∫cos2xd2x+(1/32)∫cos4xd4x =(3/8)x-(1/4)sin2x+(1/32)sin4x+C

解答如下图片:

∫(sinx)^4dx=∫(sinx)^2*(sinx)^2dx=∫((1/2)*(1-cos2x))*((1/2)*(1-cos2x))dx =∫(1/4)*(1+(cos2x)^2-2cos2x)dx=(1/4)x+(1/4)∫(cos2x)^2dx-(1/4)sin2x =(1/4)x+(1/8)∫(cos4x+1)dx-(1/4)sin2x =(3/8)x+(1/32)sin4x-(1/4)sin2x+c

需要降幂两次:

∫(sinx)^4dx=∫(sinx)^2*(sinx)^2dx=∫((1/2)*(1-cos2x))*((1/2)*(1-cos2x))dx =∫(1/4)*(1+(cos2x)^2-2cos2x)dx=(1/4)x+(1/4)∫(cos2x)^2dx-(1/4)sin2x =(1/4)x+(1/8)∫(cos4x+1)dx-(1/4)sin2x =(3/8)x+(1/32)sin4x-(1/4)sin2x+c

倍角公式降次 过程如下图:

分子分母同乘以sinx/sinx得sinx/[(sinx)^4] 原式=∫sinxdx/[(sinx)^4] =-∫d(cosx)/(1-cos²x)²

网站首页 | 网站地图
All rights reserved Powered by www.nynw.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com