nynw.net
当前位置:首页 >> sin2xDx的积分结果 >>

sin2xDx的积分结果

1、本题是典型的用分部积分的类型; 积分过程还用到了国内盛行的凑微分方法。 2、具体解答如下,如有疑问,欢迎追问,有问必答,有疑必释。 3、若点击放大,图片将会更加清晰。

其实这两种解法都是正确的 这两个结果看似不同,其他仅仅是常数的原因而已 (sinx)^2+C1 -1/2 cos2x+C2 -1/2 cos2x=sin²x-1/2 所以只要C1=-1/2 C2=0就可以了

∫sin2xdx =1/2∫sin2xd2x =-1/2*cos2x+C

解: ∫e^x·sin2xdx =e^x·sin2x-2∫e^xcos2xdx =e^x·sin2x-2[e^x·cos2x+2∫e^x·sin2x]dx =e^x·sin2x-2e^x·cos2x-4∫e^x·sin2x dx 得5∫e^x·sin2xdx=e^x·sin2x-2e^x·cos2x+C1 故∫e^x·sin2xdx=1/5·e^x·(sin2x-2cos2x)+C

设2x=t∈【0,π】 所以原式=∫(0,π)1/4tsintdt =-1/4tcost+1/4sint 所以结果为π/4

如图

答: 原积分 =-∫1/2×sin2xd(2x) =-1/2×(-cos2x) + C =cos2x/2 + C

∫lnsin2xdx(0~π/4) (表示从0到π/4的定积分) =∫ln(2sinx cosx)dx(0~π/4) =π/4*ln2+∫lnsinxdx(0~π/4)+∫lncosxdx(0~π/4) =π/4*ln2+∫lnsinxdx(0~π/4)+∫lnsinxdx(π/4~π/2) (对最后一个积分换元) =π/4*ln2+∫lnsinxdx(0~π/2) =π/4*ln2+2∫lnsin2xdx(0~π/...

解答少了个n

网站首页 | 网站地图
All rights reserved Powered by www.nynw.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com