nynw.net
当前位置:首页 >> E∧(%x²)sinx的不定积分 >>

E∧(%x²)sinx的不定积分

他们怎么都没有正确步骤?!

∫e^arcsinxdx=xe^arcsinx-∫xde^arcsinx =xe^arcsinx-∫e^arcsinx x/√(1-x²)dx =xe^arcsinx+∫e^arcsinx d√(1-x²) =xe^arcsinx+√(1-x²)e^arcsinx-∫√(1-x²)de^arcsinx =xe^arcsinx+√(1-x²)e^arcsinx-∫e^arcsinxdx ∫e^arcsi...

∫e^xsinxdx =∫sinxde^x =sinxe^x-∫e^xdsinx =sinxe^x-∫cosxe^xdx =sinxe^x-∫cosxde^x =sinxe^x-(cosxe^x-∫e^xdcosx) =sinxe^x-cosxe^x-∫sinxe^xdx 2∫e^xsinxdx=sinxe^x-cosxe^x ∫e^xsinxdx=e^x(sinx-cosx)/2 附:可以查看百度百科的“分部积分法”...

∫e^xsinxdx=e^x(sinx-cosx)/2+C。(C为积分常数) 解答过程如下: ∫e^xsinxdx =∫sinxde^x =sinxe^x-∫e^xdsinx =sinxe^x-∫cosxe^xdx =sinxe^x-∫cosxde^x =sinxe^x-(cosxe^x-∫e^xdcosx) =sinxe^x-cosxe^x-∫sinxe^xdx 2∫e^xsinxdx=sinxe^x-cosxe^x ...

两道?

点评:这道题只需注意到cosx是sinx的导数即可求解,复合函数的求导法则。

∫ e^xcosx dx= (e^x cosx + e^x sinx) / 2+c。(c为积分常数) 解:令 ∫ e^xcosx dx = A A = ∫ e^x cosx dx = ∫ cosx de^x = e^x cosx - ∫ e^x dcosx = e^x cosx + ∫ e^x sinx dx = e^x cosx + ∫ sinx de^x = e^x cosx + e^x sinx - ∫ e^x dsinx...

cos(x+π/2)=-sinx 有个负号,不等于sinx 你在这块儿差个负号

解:分享一种解法。∵1/(cosx+sinx)=(1/√2)/cos(x-π/4)=sec(x-π/4)/√2, ∴∫dx/(cosx+sinx)=(1/√2)∫sec(x-π/4)dx=(1/√2)ln丨sec(x-π/4)+tan(x-π/4)丨+C。供参考。

函数sinx/x的原函数不是初等函数,所以不定积分 ∫sinx/x dx 没有办法用初等函数表示出来,这类积分我们通常称为是“积不出来”的; 但是这个函数在[0,+∞)的广义积分(这是个有名的广义积分,称为狄里克雷积分)却是可以求得的,但不是用高等数学里介...

网站首页 | 网站地图
All rights reserved Powered by www.nynw.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com