nynw.net
当前位置:首页 >> 1/(1+Cosx)的不定积分 >>

1/(1+Cosx)的不定积分

1+cosx=2[cos(x/2)]^2 1/(1+cosx)=0.5[sec(x/2)]^2 ∫dx/(1+cosx) =∫0.5[sec(x/2)]^2dx =∫[sec(x/2)]^2d0.5x =∫dtan(x/2) =tan(x/2)+c

这根本是个基本公式 ∫ 1/(cosx)^2 dx = ∫ (secx)^2 dx = tanx + C

在把t=tan(x/2)代入。。

∫cosx/(1+cosx)dx =2∫[cos^2(x/2)-sin^2(x/2)]/[cos^2(x/2)]dx =2∫[1-tan^2(x/2)]dx =2∫[2-sec^2(x/2)]dx =4x-4tan(x/2)+C 如果满意记得采纳哦! 你的好评是我前进的动力。 (*^__^*) 嘻嘻…… 我在沙漠中喝着可口可乐,唱着卡拉ok,骑着狮子赶着蚂...

使用分部积分,高数书上也有递推公式,针对就是cosx的n次方分之1那种情形的。

解:原不定积分= ∫(1/cosx)dx=∫secx dx (这里:cosx=1/secx) =∫secx(secx+tanx)/(secx+tanx) dx(配凑法,分子分母同乘以secx+tanx) =∫1/(secx+tanx) d(secx+tanx) (这里用到sec^2xdx=dtanx,secxtanxdx=dsecx) =ln(secx+tanx)+C

利用倍角公式 对被积分函数变形 再凑微分 不定积分结果=tan(x/2)+C 过程如下图:

∫cosx/(1+x^2)dx 纯不定积分无法积出,如果是定积分还有可能是个简单结果。 cosx/(1+x^2)的泰勒级数展开式(-1

∫(1-cosx)^2 dx = ∫[1-2cosx + (cosx)^2] dx = x - 2sinx +(1/2)∫ (1+cos2x)dx = x - 2sinx +(1/2)[ x+ (1/2)sin2x ] + C =(3/2)x -2sinx +(1/4)sin2x + C

令u = tan(x / 2),dx = 2du / (1+u²) sinx = 2u / (1+u²),cosx = (1 - u²) / (1 + u²) ∫ dx / (sinx + cosx) = ∫ 2 / 【(1 + u²) * [2u / (1+u²) + (1 - u²) / (1 + u²)]】 du = 2∫ du / (-u² + 2...

网站首页 | 网站地图
All rights reserved Powered by www.nynw.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com