nynw.net
当前位置:首页 >> 1/(1+Cosx)的不定积分是怎么算啊 >>

1/(1+Cosx)的不定积分是怎么算啊

这根本是个基本公式 ∫ 1/(cosx)^2 dx = ∫ (secx)^2 dx = tanx + C

无法作答

解:原不定积分= ∫(1/cosx)dx=∫secx dx (这里:cosx=1/secx) =∫secx(secx+tanx)/(secx+tanx) dx(配凑法,分子分母同乘以secx+tanx) =∫1/(secx+tanx) d(secx+tanx) (这里用到sec^2xdx=dtanx,secxtanxdx=dsecx) =ln(secx+tanx)+C

∫1/cosxdx =∫secxdx =∫(sec²x+secxtanx)/(secx+tanx) dx =∫1/(secx+tanx) d(secx+tanx) =ln|(secx+tanx) |+c

在把t=tan(x/2)代入。。

令u = tan(x / 2),dx = 2du / (1+u²) sinx = 2u / (1+u²),cosx = (1 - u²) / (1 + u²) ∫ dx / (sinx + cosx) = ∫ 2 / 【(1 + u²) * [2u / (1+u²) + (1 - u²) / (1 + u²)]】 du = 2∫ du / (-u² + 2...

不定积分计算如上。

解:分享一种解法。∵1/(cosx+sinx)=(1/√2)/cos(x-π/4)=sec(x-π/4)/√2, ∴∫dx/(cosx+sinx)=(1/√2)∫sec(x-π/4)dx=(1/√2)ln丨sec(x-π/4)+tan(x-π/4)丨+C。供参考。

网站首页 | 网站地图
All rights reserved Powered by www.nynw.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com