nynw.net
当前位置:首页 >> 已知函数F(x)=23sinx?Cosx+2Cos2x,x∈R.(1)求... >>

已知函数F(x)=23sinx?Cosx+2Cos2x,x∈R.(1)求...

(1)由f(x)=23sinxcosx+2cos2x-1,得f(x)=3(2sinxcosx)+(2cos2x-1)=3sin2x+cos2x=2sin(2x+π6),所以函数f(x)的最小正周期为π.(2)因为f(x)=2sin(2x+π6)在区间[0,π6]上为增函数,在区间[π6,π2]上为减函数,又f(0)=1,f(π...

(1)f(x)=23sinx?cosx+2cos2x=3sin2x+cos2x+1=2(32sin2x+12cos2x)+1=2sin(2x+π6)+1,x∈R…(4分)∴f(x)的最小正周期为T=2π2=π.…(6分)(2)∵f(α2)=2sin[2(α2)+π6]+1=2sin(α+π6)+1=13,…(7分)∴sin(α+π6)=?13<0,…(8分)∵α∈[...

(Ⅰ)∵f(x)=23sinxcosx-2cos2x=3sin2x-(1+cos2x)=2sin(2x-π6)-1,∴函数f(x)的最小正周期T=π;由2kπ+π2≤2x-π6≤2kπ+3π2得:kπ+π3≤x≤kπ+5π6,k∈Z.∴函数f(x)的单调递减区间为[kπ+π3,kπ+5π6]k∈Z.(Ⅱ)∵x∈[0,π2],∴2x-π6∈[-π6,5π6],∴-...

f(x)=23sinxcosx+2cos2x?1,得f(x)=3(2sinxcosx)+(2cos2x?1)=3sin2x+cos2x=2sin(2x+π6)(1)T=2π2=π,所以函数f(x)的最小正周期为π;由2kπ?π2≤2x+π6≤2kπ+π2得kπ?π3≤x≤π6+kπ所以函数f(x)的单调递增区间为[kπ?π3,π6+kπ],k∈Z.(2)∵x∈...

(Ⅰ) f(x)=23sinxcosx+2cos2x?1=3sin2x+cos2x=2sin(2x+π6)则g(x)=|2sin(2x+π6)|,∵y=|sinx|的单调递减区间为[kπ+π2,kπ+π],(k∈Z). ∴由kπ+π2≤2x+π6≤kπ+π 得:kπ2+π6≤x≤kπ2+5π12,则g(x)的单调递减区间为[kπ2+π6,kπ2+5π12](k∈Z). (...

(1)由数f(x)=23sinxcosx+2cos2x-1,得f(x)=3sin2x+cos2x=2sin(2x+π6),所以函数f(x)的最小正周期为π;∵2kπ-π2<2x+π6<2kπ+π2,k∈Z∴x∈(kπ-π3,kπ+π6),k∈Z又x∈[0,π2],f(x)=2sin(2x+π6)在[0,π2]上的单调递增区间为(0,π6);...

函数f(x)=1+2cos2x+3sin2x+a-1=2sin(2x+π6)+a.(1)∴f(x)的最小正周期为 T=2πω=π,由2kπ-π2≤2x+π6≤2kπ+3π2,k∈z,可得kπ-π3≤x≤kπ+π6,∴递增区间为[kπ-π3,kπ+π6],k∈z.(2)当x∈[0,π2]时,π6≤2x+π6≤7π6,∴当 2x+π6=7π6 时,f(x)的最...

(1)f(x)=sin2x+cos2x…(2分)=2sin(2x+π4)…(5分)所以f(x)的最大值为2…(6分).(2)由(1)得f(α+π8)=2sin[2(α+π8)+π4]=2sin(2α+π2)…(7分)=2cos2α…(8分)P(-3,4)在角α的终边上,cosα=?35…(10分)所以f(α+π8)=22cos2α?2…(11...

(1)因为f(x)=23sinxcosx+1?2sin2x=3sin2x+cos2x=2sin(2x+π6),故 函数f(x)的最小正周期为T=π. 由2kπ?π2≤2x+π6≤2kπ+π2,k∈Z,得f(x)的单调递增区间为[kπ?π3,kπ+π6],k∈Z.(2)根据条件得μ=2sin(4x+5π6),当x∈[0,π8]时,4x+5π6∈[56π,...

(1)由题知,f(x)=23sinxcosx+2cos2x-1=3sin2x+cos2x=2sin(2x+π6),∴函数的最小正周期为T=π;∵x∈[0,π2],∴2x+π6∈[π6,7π6],∴f(x)max=f(π6)=2 ,f(x)min=f(π2)=?1;(2)由(1)知,f(x0)=2sin(2x0+π6),∴f(x0)=2sin(2x0+π6)=65...

网站首页 | 网站地图
All rights reserved Powered by www.nynw.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com