nynw.net
当前位置:首页 >> 求sin^2x×Cos^2x不定积分 >>

求sin^2x×Cos^2x不定积分

利用半角公式如图降次计算。经济数学团队帮你解答,请及时采纳。谢谢!

应该是∫(sinx)^2cos2xdx,用降幂公式把原式打开即可,解法如下:

(sinx*cosx)^2=0.25*sin(2x)^2 积分=-2/sin(2*x)*cos(2*x)+C

还需要帮忙的话可以先采纳再详解

∫cos^2xdx =∫(1+cos2x)dx/2 =∫(1+cos2x)d2x/4 =(1/4)∫[d2x+cos2xd2x] =(1/4){2x+sin2x+C1} =x/2+(sin2x)/4+C

题干不清,无法作答。

变形=2sinxcosx/[cosx+(1-cos2x)/2]dx =-2cosx[cosx+(1-cos2x)/2]d(cosx) 令t=cosx

可以用降幂公式啊,∫ cos²2x dx=1/2 * (1+cos4x)dx=1/2*x+1/2*1/4*sin4x+c,楼上用的是换元法,希望能给你提供另外一种解答~

将cos^2(x)换为(1-sin^2(x))没有意义! 将1单独处理后不过是将原积分变为: x^2/2-∫x*sin^2(x)dx cos和sin是对偶的,求sin的积分和求cos的积分是一样难的,所以这样解是原地踏步。 正确做法就是图中的降幂做法!

利用二倍角公式降次 cos4x=1-2sin²2x ∴sin²2x=(1-cos4x)/2 ∫ sin²2xdx =∫ (1-cos4x)/2 dx =(1/2)*(∫dx-∫cos4xdx) =(1/2)*[x-(1/4)sin4x]+C =x/2-(sin4x)/8+C C为任意常数

网站首页 | 网站地图
All rights reserved Powered by www.nynw.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com