nynw.net
当前位置:首页 >> 求解高数不定积分题 1 ∫——————————= A²sin&#1... >>

求解高数不定积分题 1 ∫——————————= A²sin&#1...

∫sin2x/(1+sin²x)dx =2∫sinxcosx/(1+sin²x)dx =2∫sinx/(1+sin²x)dsinx =∫1/(1+sin²x)dsin²x =ln(1+sin²x)+C

您好,答案如图所示: 很高兴能回答您的提问,您不用添加任何财富,只要及时采纳就是对我们最好的回报。若提问人还有任何不懂的地方可随时追问,我会尽量解答,祝您学业进步,谢谢。☆⌒_⌒☆ 如果问题解决后,请点击下面的“选为满意答案”

看图

这是一个超越积分(通常也称为不可积),也就是说这个积分的原函数不能用我们所学的任何一种函数来表示.但如果引入新的函数erf(x)=∫[0,x]e^(-t^2)dt,那么该函数的积分就可表示为erf(x)+c. 道理很简单,比如∫x^ndx,一般的该积分为1/(n+1)x^(n+1),如果...

解: ∫(x²-1)sin2xdx =∫x²sin2xdx-∫sin2xdx =-x²(cos2x)/2 +∫xcos2x dx+∫sin2xdx =-x²(cos2x)/2 +x(sin2x)/2-1/2 ∫sin2xdx+∫sin2xdx =-x²(cos2x)/2 +x(sin2x)/2+1/2 ∫sin2xdx =-x²(cos2x)/2 +x(sin2x)/2-1/4 cos2x+C

令x=sinz,dx=cosz dz,cosz=√(1-x²)∫ x²/√(1-x²) dx = ∫ sin²z*cosz/√(1-sin²z) dz= ∫ sin²z*cosz/cosz dz= ∫ sin²z dz= (1/2)∫&n...

令x=sint,t∈[-π/2,π/2] 则 √(1-x²)=√(1-1sin²t)=cost,dx=costdt ∫1/[x√(1-x²)] dx = ∫cost/(sintcost) dt =∫csctdt =ln|csct-cott|+C =ln|[2-√(1-x²)]/x|+C C为任意常数

1.设∫f(x)dx=F(x)+C,且x=at+b,则∫f(t)dt= 解:积分不变性 ∫f(t)dt =F(t)+C 2.不定积分∫(sine^(-x))^2/x dx+∫(cose^(-x))^2/x dx= ∫(sine^(-x))^2/x dx+∫(cose^(-x))^2/x dx =∫[(sine^(-x))^2+(cose^(-x))^2]/x dx =∫(1/x)dx =ln|x|+C

解答如下图片:

网站首页 | 网站地图
All rights reserved Powered by www.nynw.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com