nynw.net
当前位置:首页 >> 求定积分∫%1~1(x^1999Cos^2x+1/(1+x^2))Dx >>

求定积分∫%1~1(x^1999Cos^2x+1/(1+x^2))Dx

定积分偶倍奇零性质, =0+2∫(0到1)1/(1+x^2)dx =2arctanx =π/2

对称区间上奇函数的积分为 0 原式 = ∫[-1,1]dx/(1+x^2) = arctanx [-1,1] = arctan1 - arctan(-1) = π/4 - (-π/4) = π/2

凑微分即可

首先考虑换元法 令x=tant 则dx=(sect)^2 dt 所以原式=∫(sect)^(-3) * (sect)^2 dt =∫(sect)^(-1) dt =∫cost dt =sint + C =tant / √(1+(tant)^2) + C =x/√(1+x^2) + C 完

解:令x^(1/6)=t,则x^(1/3)=t^2,x^(1/2)=t^3,x=t^6,dx=6t^5dt 于是,原式=∫6t^5dt/(t^2+t^3) =6∫t^3dt/(t+1) =6∫[t^2-t+1-1/(t+1)]dt =6(t^3/3-t^2/2+t-ln│t+1│)+C (C是常数) =2t^3-3t^2+6t-6ln│t+1│+C =2x^(1/2)-3x^(1/3)+6x^(1/6)-6ln│x^(...

简单凑微分,详解参考下图

分母因式分解为:(x+3)(x-1) 令:(2x+1)/[(x+3)(x-1)]=A/(x+3)+B/(x-1) 右边通分合并,与左边比较系数后得:A=5/4,B=3/4 则:∫ (2x+1)/(x²+2x-3) dx =(5/4)∫ 1/(x+3) dx + (3/4)∫ 1/(x-1) dx =(5/4)ln|x+3| + (3/4)ln|x-1| + C

设x=tant =>dx=d(tant)=sec²tdt ∴ ∫(1/√(1+x^2))dx =∫(1/sect)sec²tdt =∫sectdt =∫cost/(cost)^2 dt =∫1/(cost)^2 dsint =∫1/(1-(sint)^2) dsint 令sint = θ化为∫1/(1-θ^2)dθ=(ln|1+x|-ln|1-x|)/2+C =ln(√((1+θ)/(1-θ)))+C =ln|sect...

变形然后第二类换元积分。 满意请采纳!!!

如图所示:

网站首页 | 网站地图
All rights reserved Powered by www.nynw.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com