nynw.net
当前位置:首页 >> 求∫2xCos(x^2+1)Dx的不定积分. >>

求∫2xCos(x^2+1)Dx的不定积分.

凑微分即可

∫xcos2xdx =(1/2)∫xdsin2x =(1/2)x.sin2x -(1/2)∫sin2xdx =(1/2)x.sin2x +(1/4)cos2x + C

解: ∫(x²-1)sin2xdx =∫x²sin2xdx-∫sin2xdx =-x²(cos2x)/2 +∫xcos2x dx+∫sin2xdx =-x²(cos2x)/2 +x(sin2x)/2-1/2 ∫sin2xdx+∫sin2xdx =-x²(cos2x)/2 +x(sin2x)/2+1/2 ∫sin2xdx =-x²(cos2x)/2 +x(sin2x)/2-1/4 cos2x+C

∫xcos²xdx=∫x(1+cos2x)/2dx=1/2(∫xdx+∫xcos2xdx) =1/2(1/2x²+∫xcos2xdx) =1/2(1/2x²+1/2∫xdsin2x) =1/2(1/2x²+1/2(xsin2x-∫sin2xdx)) =1/2(1/2x²+1/2xsin2x+1/4cos2x)+C

令u = 2x,du = 2 dx 原式= (1/2)∫ 1/cosu du = (1/2)∫ secu du = (1/2)∫ secu(secu+tanu) / (secu+tanu) du = (1/2)∫ (secu*tanu+sec²u) / (secu+tanu) du = (1/2)∫ d(secu+tanu) / (secu+tanu) = (1/2)ln|secu + tanu| + C = (1/2)ln|sec...

这个不是刚才问过了

∫x^2[cos(x/2)]^2dx =(1/2)∫x^2(1+cosx)dx =(1/2)∫x^2dx+(1/2)∫x^2cosxdx =(1/6)x^3+(1/2)∫x^2d(sinx) =(1/6)x^3+(1/2)x^2sinx-(1/2)∫sinxd(x^2) =(1/6)x^3+(1/2)x^2sinx-∫xsinxdx =(1/6)x^3+(1...

显然1+cos2x=2(cosx)^2 那么 原积分 =∫1/2(cosx)^2 dx =0.5 *∫1/(cosx)^2 dx =0.5tanx +C,C为常数

=∫½[1+cos(2x)]dx =∫½dx+∫½cos(2x)dx =∫½dx+¼∫cos(2x)d(2x) =½x+¼sin(2x) +C 解题思路: 先运用二倍角公式进行化简。 cos(2x)=2cos²x-1 则cos²x=½[1+cos(2x)]

(sinx*cosx)^2=0.25*sin(2x)^2 积分=-2/sin(2*x)*cos(2*x)+C

网站首页 | 网站地图
All rights reserved Powered by www.nynw.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com