nynw.net
当前位置:首页 >> 计算不定积分∫ Cos(1/x)/(x^2)Dx >>

计算不定积分∫ Cos(1/x)/(x^2)Dx

令 t=1/x ,则 dt= -dx/x^2 , 原式=∫-costdt=sint+C=sin(1/x)+C 。

令cosx=t,dx=-1/(1-t^2)^0.5dt,(1+cosx^2)^0.5=1/tanx=(1-t^2)^0.5/t, 于是原积分=∫t/(t^2-1)dt=1/2∫1/(t^2-1)d(t^2-1)=1/2ln(t^2-1))+C=lnsinx+C 望采纳~

如图所示

过程如图: 名词解释 不定积分 在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。这样,许多函数的定积分的计算就可以简便地...

=∫½[1+cos(2x)]dx =∫½dx+∫½cos(2x)dx =∫½dx+¼∫cos(2x)d(2x) =½x+¼sin(2x) +C 解题思路: 先运用二倍角公式进行化简。 cos(2x)=2cos²x-1 则cos²x=½[1+cos(2x)]

因为导数(1+xx)'=2x, 所以微分d(1+xx)=2xdx, 所以xdx=(1/2)d(1+xx)。 则∫xdx/(1+xx) =(1/2)∫d(1+xx)/(1+xx) 可令u=1+xx得到 =(1/2)Ln(1+xx)+C。

首先考虑换元法 令x=tant 则dx=(sect)^2 dt 所以原式=∫(sect)^(-3) * (sect)^2 dt =∫(sect)^(-1) dt =∫cost dt =sint + C =tant / √(1+(tant)^2) + C =x/√(1+x^2) + C 完

如图

显然1+cos2x=2(cosx)^2 那么 原积分 =∫1/2(cosx)^2 dx =0.5 *∫1/(cosx)^2 dx =0.5tanx +C,C为常数

看图

网站首页 | 网站地图
All rights reserved Powered by www.nynw.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com