nynw.net
当前位置:首页 >> 定积分∫负1到1(x∧1999 Cos²x+1/(1+x²... >>

定积分∫负1到1(x∧1999 Cos²x+1/(1+x²...

对称区间上奇函数的积分为 0 原式 = ∫[-1,1]dx/(1+x^2) = arctanx [-1,1] = arctan1 - arctan(-1) = π/4 - (-π/4) = π/2

解: ∫x³/√(1+x²)dx =∫(x³+x-x)/√(1+x²)dx =∫[x√(1+x²) -x/√(1+x²)]dx =½·⅔·(1+x²)^(3/2) -√(1+x²) +C =⅓(x²-2)√(1+x²) +C

定积分偶倍奇零性质, =0+2∫(0到1)1/(1+x^2)dx =2arctanx =π/2

本题需先证明一个结论,这个在同济大学高等数学教材里定积的换元法部分有这个例子。里面的第二个结论是我们要用的。 有了这个结论本题就十分简单了,下面是过程。

亲 答案满意吗点个

=∫(x+1/2)/(x²+x+1)dx+1/2∫1/((x+1/2)²+3/4)dx =1/2∫1/(x²+x+1)d(x²+x+1)+1/2∫1/(u²+3/4)du =(1/2)ln(x²+x+1)+(1/2)/(3/4)*√3/2*arctan(2u/√3)+C =(1/2)ln(x²+x+1)+(1/√3)arctan((2x+1)/√3)+C

先分解因式: ∫ 1/(x³ + 1) dx = ∫ 1/[(x + 1)(x² - x + 1)] dx = ∫ A/(x + 1) dx + ∫ (Bx + C)/(x² - x + 1) dx 1 = A(x² - x + 1) + (Bx + C)(x + 1) = Ax² - Ax + A + Bx² + Cx + Bx + C 1 = (A + B)x² +...

原式=∫(x+1)/x²+∫xlnxdx =∫x/x²+∫1/x²+1/2∫lnxdx² =∫1/x+∫1/x²+1/2*x²lnx-1/2∫x²dlnx =lnx-1/x+1/2*x²lnx-1/2∫x²*1/x dx =lnx-1/x+1/2*x²lnx-1/2∫x dx =lnx-1/x+1/2*x²lnx-x²/4+C

应该是

令x=sint,t∈[-π/2,π/2] 则 √(1-x²)=√(1-1sin²t)=cost,dx=costdt ∫1/[x√(1-x²)] dx = ∫cost/(sintcost) dt =∫csctdt =ln|csct-cott|+C =ln|[2-√(1-x²)]/x|+C C为任意常数

网站首页 | 网站地图
All rights reserved Powered by www.nynw.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com