nynw.net
当前位置:首页 >> 不定积分sin^2x*Cos^4xDx怎么算 >>

不定积分sin^2x*Cos^4xDx怎么算

∫(sinx)^2*(cosx)^4dx =(1/4)∫(sin2x)^2(1-(sinx)^2)dx =(1/4)∫(sin2x)^2(1/2+cos2x/2)dx =(1/16)∫(1-cos4x)dx+(1/16)∫(sin2x)^2dsin2x =(1/16)x-(1/64)sin4x+(1/48)(sin2x)^3+C

如图:

设u=4x,x=u/4,dx=1/4du;所以,原式就=1/4积分号cosudu,=1/4sinu+C=1/4sin4x+C.

先降次把cos^4x降为cos^2x*cos^2x再把cos^2x降为1/2(cos2x+1)由于有两项这个式子相乘次数又升高了再次用倍角公式降次降到一次为止别忘了c

此题关键是分步积分法和三角函数的降阶等。 分部积分法 设函数和u,v具有连续导数,则d(uv)=udv+vdu。移项得到udv=d(uv)-vdu 两边积分,得分部积分公式 ∫udv=uv-∫vdu。 ⑴ 称公式⑴为分部积分公式.如果积分∫vdu易于求出,则左端积分式随之得到....

∫(sinx)^4dx =∫[(1/2)(1-cos2x]^2dx =(1/4)∫[1-2cos2x+(cos2x)^2]dx =(1/4)∫[1-2cos2x+(1/2)(1+cos4x)]dx =(3/8)∫dx-(1/2)∫cos2xdx+(1/8)∫cos4xdx =(3/8)∫dx-(1/4)∫cos2xd2x+(1/32)∫cos4xd4x =(3/8)x-(1/4)sin2x+(1/32)sin4x+C

如图

网站首页 | 网站地图
All rights reserved Powered by www.nynw.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com