nynw.net
当前位置:首页 >> 不定积分∫sin2x/(1+Cos2x)2Dx的解决方案 >>

不定积分∫sin2x/(1+Cos2x)2Dx的解决方案

将cos^2(x)换为(1-sin^2(x))没有意义! 将1单独处理后不过是将原积分变为: x^2/2-∫x*sin^2(x)dx cos和sin是对偶的,求sin的积分和求cos的积分是一样难的,所以这样解是原地踏步。 正确做法就是图中的降幂做法!

原式=∫1/(1+(cosx)^2) dx 分子分母同除以(cosx)^2 =∫(secx)^2/((secx)^2+1) dx =∫1/((secx)^2+1) d (tanx) =∫1/((tanx)^2+2) d (tanx) 套公式 =1/√2*arctan((tanx)/√2)+C

令u=1+cos2x 则du=-2sin2xdx 原式=-1/2·∫1/u·du =-1/2·lnu+C =-1/2·ln(1+cos2x)+C

∫ 1/(sin²xcos²x) dx =∫ 4/(4sin²xcos²x) dx =4∫ 1/sin²2x dx =2∫ csc²2x d(2x) =-2cot2x + C 希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮。

你好!可以如图改写并套用基本积分公式得出答案。经济数学团队帮你解答,请及时采纳。谢谢!

注意2x+1的导数是2 即d(2x+1)/dx = 2 于是d(2x+1) = 2 dx 就有dx = (1/2)d(2x+1),这是微分原理哦 很高兴能回答您的提问,您不用添加任何财富,只要及时采纳就是对我们最好的回报 。若提问人还有任何不懂的地方可随时追问,我会尽量解答,祝您学...

其实都部分对 ∫ sinxcosx dx =(1/2)∫ sin2x dx =-cos(2x)/4 + C ∫ sinxcosx dx =∫ sinx d(sinx) =sin^2x/2 + C 利用倍角公式:cos(2x)=1-2sin^2x 很容易得到两个答案只相差一个常数,这是十分正常的 因为不定积分求解得到的就是一族函数 所以要...

∫ (x + 2sinxcosx)/(1 + cos2x) dx = ∫ x/(1 + cos2x) dx + ∫ 2sinxcosx/(1 + cos2x) dx = ∫ x/(1 + 2cos²x - 1) dx + ∫ sin2x/(1 + cos2x) dx = (1/2)∫ xsec²x dx - (1/2)∫ d(cos2x)/(1 + cos2x) = (1/2)∫ x d(tanx) - (1/2)∫ d(1 + ...

网站首页 | 网站地图
All rights reserved Powered by www.nynw.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com