nynw.net
当前位置:首页 >> ∫sin2x/1+sin2xDx 求不定积分 >>

∫sin2x/1+sin2xDx 求不定积分

∫sin2x/(1+sin²x)dx =2∫sinxcosx/(1+sin²x)dx =2∫sinx/(1+sin²x)dsinx =∫1/(1+sin²x)dsin²x =ln(1+sin²x)+C

∫sin(2x+1)dx = 1/2∫sin(2x+1)d(2x+1) = -1/2*cos(2x+1)+C

见图

令u=1+cos2x 则du=-2sin2xdx 原式=-1/2·∫1/u·du =-1/2·lnu+C =-1/2·ln(1+cos2x)+C

过程如下:

能拍题吗 看不懂

以上,请采纳。

分部积分法: 以上,请采纳。

解:原式=∫d(sin²x)/√(1+sin²x)=2(1+sin²x)^(1/2)+C。 供参考。

这题的不定积分过程应该没有困难,我想你的问题在于最后代入积分限时出错。注意:原函数在x=π/2处是个间断点: 那么就需要分区间代入积分结果,因为牛顿-莱布尼兹公式要求区间上函数是连续的,参考下图:

网站首页 | 网站地图
All rights reserved Powered by www.nynw.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com