nynw.net
当前位置:首页 >> ∫1/1+Cos2xDx不定积分 >>

∫1/1+Cos2xDx不定积分

显然1+cos2x=2(cosx)^2 那么 原积分 =∫1/2(cosx)^2 dx =0.5 *∫1/(cosx)^2 dx =0.5tanx +C,C为常数

∫1/(1-cos2x) dx =∫1/[1-(1-2sin²x)]dx =∫1/2sin²x dx =(1/2)∫csc²xdx =-(1/2)cotx+c

拆项求解

∫(1+cos²x)/(1+cos2x)dx =∫(1+cos²x)/(2cos²x)dx =1/2*∫dtanx+1/2*∫dx =(tanx+x)/2+C

令u=1+cos2x 则du=-2sin2xdx 原式=-1/2·∫1/u·du =-1/2·lnu+C =-1/2·ln(1+cos2x)+C

cos2x=cosx平方-sinx平方

∫cos2xdx =∫cos2xd(1/2)2x =-1/2sin2x+C

∫(x-1)cos2xdx =∫(xcos2x-cos2x)dx =∫xcos2xdx-∫cos2xdx =1/2∫xdsin2x-∫cos2xdx =1/2(xsin2x-∫sin2xdx)(分部积分法)-∫cos2xdx =1/2xsin2x-1/2∫sin2xdx-∫cos2xdx =1/2xsin2x-1/4∫sin2xd2x-∫cos2xdx =1/2xsin2x+1/4cos2x-1/2sin2x 你是第三步错了...

原式=1/2sin2x+C

网站首页 | 网站地图
All rights reserved Powered by www.nynw.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com